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crucially affects the process of moduli stabilisation and cannot be neglected in realistic

set-ups. Their net effect in the 4D effective action is to induce a matter field dependence

in the non-perturbative superpotential and a Fayet-Iliopoulos D-term. We study flux com-

pactifications of IIB string theory in the presence of magnetised D7 branes. These give

rise to anomalous U(1)’s that modify the standard moduli stabilisation procedure. We

consider simple orientifold models to determine the matter field spectrum and the form of

the effective field theory. We apply our results to one-modulus KKLT and multi-moduli

large volume scenarios, in particular to the Calabi-Yau IP4
[1,1,1,6,9]. After stabilising the

matter fields, the effective action for the Kähler moduli can acquire an extra positive term

that can be used for de Sitter lifting with non-vanishing F- and D-terms. This provides an

explicit realization of the D-term lifting proposal of [1].
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1. Introduction

Significant progress has been made recently regarding the supersymmetry breaking and

moduli stabilisation problems of string compactifications (for recent reviews see [2, 3]).

In particular, IIB string flux compactifications have provided concrete models of moduli

stabilisation in which the scale of supersymmetry breaking can be calculated as well as the

relevant soft breaking terms in the effective action.
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This has been achieved independently of the details and location of the chiral fields of

the Standard Model. This is in part because of the ‘modular’ structure inherent in type

II string models. There are global bulk issues such as moduli stabilisation, inflation and

supersymmetry breaking, and there are local brane issues regarding the gauge group, spec-

trum of chiral fields, etc. Usually the two types of issues can be approached independently

of each other. Separating global questions from local ones in a systematic construction of

realistic models was proposed in [4] and called the ‘bottom-up’ approach to string model

building. For relevant progress on the model building side see [5, 6].

This procedure is very efficient in the sense that once a global problem, such as moduli

stabilisation, has been solved, then a realistic D-brane construction in terms of D-branes at

singularities or magnetised D7 branes can be attached to the compactification manifold to

make it into a realistic model. However at the end of the day we have to consider the two

parts together in order to control the low-energy nature of soft supersymmetry breaking

terms, reheating, local and global symmetries, etc. We therefore should investigate the

effects that chiral D-brane models have in the effective action for the moduli fields and if

it is needed to incorporate them in the moduli stabilisation procedure.

One of the generic properties of chiral D-brane models is the presence of anomalous

U(1)’s. In a typical construction, the chiral matter of the spectrum naturally induces

anomalies for some of the U(1) gauge fields. The anomaly is cancelled by the standard

Green-Schwarz mechanism with the net effects of giving a mass to the corresponding gauge

field, a ‘charge’ to the modulus field corresponding to the gauge coupling of the effective

field theory, and inducing a Fayet-Iliopoulos D-term proportional to the total charge of

the chiral fields. This shows in particular that the non-perturbative terms in the KKLT

scenario [7] involving only the Kähler modulus field are not gauge invariant, and therefore

that the chiral matter fields must also enter the superpotential in such a way to render it

gauge invariant. Thus the effects of anomalous U(1) fields must be taken into account in

the moduli stabilisation procedure if we have chiral fields living in D-branes, as is required

for instance by the inclusion of the Standard Model.

The fact that anomalous U(1)’s also induce Fayet-Iliopoulos (FI) D-terms can modify

the moduli stabilisation procedure. Since D-terms are positive, it was proposed in [1] that

they can be used to lift the original KKLT AdS minimum to a de Sitter one in a way

consistent with a supersymmetric effective action. See [8 – 11] for recent discussions of

this proposal. More generally there is an important question that emerges here: could

the effects induced by anomalous U(1)’s change the successful results regarding moduli

stabilisation so far?

In this article we address the issue of moduli stabilisation in the presence of anomalous

U(1)’s1. Following the standard procedure (and the proposal of [1]) we consider D7 branes

with non-vanishing magnetic fluxes. Magnetic fluxes are the standard source of chirality

and of the anomalous U(1)’s. In the next section we consider simple orientifold models

and determine the corresponding U(1) charges of the different matter fields and compute

the FI term. In section 3 we consider simple examples of one modulus KKLT type or

1For a perturbative moduli stabilisation proposal including FI terms see [13].
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several moduli large volume type and see how moduli stabilisation is affected by these

new ingredients, including a non-perturbative superpotential of the Affleck-Dine-Seiberg

type invariant under the anomalous U(1). We find that these effects either leave the good

features of the model, such as the existence of exponentially large volumes, or modify them

to allow de Sitter lifting, depending on the model, the distribution of the D7 branes and

magnetic fluxes. We include several appendices with details of some of the calculations,

including anomaly cancellation and the FI term.

2. D-terms and de Sitter vacua

2.1 General considerations

One of the key steps in the KKLT procedure is the lifting of vacuum energy to a positive

value. In the original KKLT paper [7], the lifting term arose from an anti-D3 brane localised

in a highly warped region of the Calabi-Yau. This type of brane breaks supersymmetry

explicitly, and the low energy effective theory cannot be described by the standard N = 1

four dimensional supergravity.

An alternative and more controlled lifting mechanism was proposed in [1]. The idea

is to use a D-term generated by magnetic fluxes on D7 branes to provide an additional

positive contribution to the scalar potential. This can, under favourable conditions, result

in a de Sitter vacuum. The formalism is that of supergravity and the supersymmetry

breaking is spontaneous rather than explicit.

One of the reasons the original proposal of [1] ought to be studied in more detail is the

observation, pointed out in [8], that in a general N = 1 supergravity theory, there exists a

relation between F-terms and D-terms,

D =
i

W

∑

i

(δφi)DiW. (2.1)

Here W is the superpotential, f the gauge kinetic function, DiW = ∂iW + W∂iK the

Kähler covariant derivative with K the Kähler potential and δφi the transformation of

the field φi under the U(1) generating the D-term. The relation (2.1) follows simply from

gauge invariance and holds at any point in field space (except where W = 0). It is clear

that DiW = 0 implies D = 0, making it essentially impossible to uplift an original SUSY

vacuum, i.e. to have pure D-term supersymmetry breaking, contrary to the standard global

supersymmetry case. The proposal in [1] actually considered both F and D terms to be

non-vanishing once matter fields were introduced, but an explicit analysis was not done.

This has been done in recent publications [9 – 11] in the context of the KKLT scenario.

Since the original KKLT scenario is such that the AdS minimum is supersymmetric,

it is difficult to simply lift it by a standard D-term. Usually D = 0 can be used to fix the

charged matter fields φi giving the KKLT F-term potential as a function of the moduli

fields only, and hence essentially recovering the KKLT result.

On the other hand there exist a large class of models in which moduli stabilisation is

achieved in such a way that the AdS minimum is non-supersymmetric [15 – 17]. In most

of these cases the volume is exponentially large with very interesting phenomenological
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implications. Since the original F-term is non-zero it is natural to expect that a D-term

can be non-zero, contributing a positive term to the scalar potential and therefore leading

to the possibility of de Sitter lifting. Therefore the natural context in which to look

for vacua that can be uplifted with D-terms is that of nonsupersymmetric large volume

compactifications. Another interesting question for these models is whether the addition

of D-terms still preserves the fact that the stabilised volume is still exponentially large.

D-terms in string theory [18] have a very interesting structure, since they are generi-

cally related to massive and anomalous U(1)s and the Green-Schwarz mechanism, and this

relation greatly constraints the form of the D-term potential. We will briefly review this

topic in the following subsection, before considering concrete setups in which we will carry

out the lifting procedure.

2.2 On FI terms, anomalous U(1)s and massive gauge bosons

As explained in [19, 20, 22], turning on internal magnetic flux in the worldvolume of a

D7 brane generates an FI term in the four dimensional world-volume theory. This can

be seen from several points of view. Firstly, the presence of the magnetic field generates

chiral fermions and scalars in the low energy theory. For certain values of the moduli the

scalars become massless and the theory supersymmetric. This pattern of supersymmetry

breaking/restoration is clearly reminiscent of an FI mechanism. But perhaps the clearest

way to see that an FI term is generated is considering the fact that four dimensional

couplings of the form
∫

D2∧F , where the 2-form D2 comes from the reduction of the 4-form

RR field C4, and F is the four dimensional gauge field strength, are generated when internal

magnetic flux is turned on. This kind of four dimensional coupling generates masses for

the corresponding U(1) gauge bosons. The 2-form field D2 is the four dimensional Hodge

dual of an axion zero form φ, which is the imaginary part of a chiral superfield modulus

T that parametrises the volume of some 4-cycle. The field φ transforms under a U(1)

gauge transformation as φ → φ + Qθ(x), where Q (the charge of this transformation) is

related to the internal magnetic flux on the D-brane. It follows that in order to get the
∫

D2∧F coupling, the Kähler potential of the four dimensional theory must depend on the

combination T + T ∗ + QV , with V the vector multiplet corresponding to F [18]. But in a

supersymmetric theory the presence of a gauge boson mass is always linked to an FI term,

since both come from the same term in the Lagrangian when expressed in the superfield

formulation. For global supersymmetry:

∫

d4θ K(T + T ∗ + QV ) =

(

∂K

∂V

)

V =0

V |θ4 +
1

2

(

∂2K

∂V 2

)

V =0

(∂µφ + Aµ)2 + . . .

Let us be more precise. Consider the Chern-Simons part of the D-brane action

SCS = −µ7

∫

D7

∑

p

ı∗Cp ∧ eı∗B+F . (2.2)

Here F is a mass dimension two form, and F ≡ 2πα′F so that F has mass dimension 0.

ı∗ denotes the pullback operation. Expanding this action, the coupling to the RR 4-form
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C4 is2
∫

D7
C4 ∧ F ∧ F. (2.3)

Taking one of the F ’s to be the compact flux f and the other to be with non-compact

indices (denoted by F ), and reducing C4 = Dα
2 ∧ ωα + · · · , where ωα form a basis for the

2-cohomology of the Calabi-Yau, we have
∫

Σ
ωα ∧ f

∫

M4

Dα
2 ∧ F. (2.4)

Here Σ denotes the 4-cycle wrapped by the D-brane. What is interesting to note here is

that since Dα
2 is correlated with the 2-cycle whose volume form is proportional to ωα, its

four dimensional Hodge dual, the axion zero form σα =
∫

Σα
C4, must be related to the four

cycle that is Poincaré dual of ωα, namely ω̃α. Since one defines the Kähler moduli fields

as [22]

Tα =
1

2π(2π
√

α′)4gs

(∫

Σα

√
gd4x + iσα

)

, (2.5)

we see that the Kähler moduli fields that get charged under the U(1) are those parame-

terising volumes of a four-cycles that have non-zero intersection with the two-cycle where

the magnetic field is supported. Also, since the coupling (2.4) gives a mass for the U(1)

gauge boson supported on the brane with internal magnetic flux, it follows from super-

symmetry that whenever magnetic flux is turned on in a D7-brane, both a Fayet-Iliopoulos

term3 and a mass for the corresponding U(1) gauge boson are generated. However, it is

important to emphasise that this magnetic flux does not generically generate a charge for

the T modulus whose vev parametrises the volume of the 4-cycle wrapped by the D7 with

internal magnetic flux. This field T only gets charged if the corresponding 4-cycle has

self-intersections [20, 22].

The fact that a given field Tα gets charged does not mean that the U(1)a associated to

the brane supporting magnetic flux is anomalous. Such a U(1) will be anomalous if there

exists a term in the four dimensional low energy effective action of the form σαTr Fb ∧
Fb, where Fb is the field strength of some U(1)b or SU(Nb) gauge group present in the

construction, or σαTr R ∧ R, R being the Ricci form. The former couplings give rise to

mixed U(1)a −SU(Nb)
2 and mixed U(1)a −U(1)2b anomalies in the low energy theory (note

that the cubic a = b case is a particular case of this). The latter couplings give rise to

gravitational anomalies in the low energy theory. There will be mixed gauge anomalies for

a given U(1) whenever any D7 brane wraps a four-cycle that is charged under this U(1).

The cubic anomalies will arise as a particular case of this, either because the cycle has

self-intersections or has a zero intersection with its orientifold image. The gravitational

anomaly will typically arise when the corresponding D7 brane has non-zero intersection

with the orientifold. Note that every anomalous U(1) will automatically be massive, but a

massive U(1) need not be anomalous.

2We will not consider couplings to the NSNS field B2 in what follows.
3Note that since this FI term is a field dependent quantity, it can indeed be zero in some regions of

the moduli space. If this was not the case, it would be impossible to have magnetised brane constructions

preserving supersymmetry.
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Figure 1: This is a representation of the basic set-up. A set of n D branes is such that one of them

is magnetised leading to a U(n− 1)×U(1) gauge group. The dotted lines represent the orientifold

plane. Chiral fields are ϕ in the fundamental of SU(Nc) (with Nc = n− 1) corresponding to strings

going from the non-abelian set of branes to the magnetised brane, ϕ̃ in the anti-fundamental,

representing strings with endpoints in the non-abelian set of branes and the orientifold image of

the magnetised brane and ρ corresponding to strings with endpoints at the magnetised brane and

its orientifold image.

Consider a setup in which magnetic flux has been turned on in the world-volume of a

D7 brane wrapping a 4-cycle with Kähler modulus TF . The D-term potential arising from

this setup is

VD =
g2

2

(

Qα

4π2
∂TαK +

∑

i

qiφiKφi

)2

. (2.6)

where the Tα are all the Kähler moduli charged under the anomalous U(1), the φi are the

unnormalised open string fields charged under the same U(1), and Kφ = ∂K/∂φ. One can

get the expression for the gauge coupling constant g2 from the dimensional reduction of

the DBI action. The result [22] is

g−2 = ReTF − fF ReS. (2.7)

Here fF is a certain magnetic flux dependent factor. In the large TF limit which we will

be concerned with throughout the paper, we may neglect the ReS contribution to g−2.

2.3 General setup and spectrum

One of the aims of this paper is to study under which circumstances it is possible to get

D-term lifting in string models. As already emphasised, it is better to start from a non-

supersymmetric vacuum in order to get the lifting. Given this, a natural context to work in
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are the large volume models [16, 17], in which vacua have naturally non vanishing F-terms.

One could also attempt to apply D-term lifting on KKLT vacua, since there may still be

minima in which both the D-term and the F-terms are non-vanishing. We can therefore

imagine a few different scenarios. In the next sections we will consider the following:

(i) One may consider the simplest model with one Kähler modulus T , with a nonper-

turbative superpotential fixing the modulus, and turn on magnetic fluxes such that

T becomes charged.

(ii) Alternatively, one can consider a model with at least two Kähler moduli for which

large volume minima have been found [16]. Then one may turn on magnetic fluxes

on the exponentially large 4-cycle which determines the volume so that the corre-

sponding modulus becomes charged, without the need of including a nonperturbative

superpotential for it.

(iii) One can also consider a model with more than one modulus and turn on magnetic

fluxes on branes wrapping one of the ‘small’ 4-cycles which is nonperturbatively

stabilised. There are two sub-cases here, the first being that the cycle becoming

charged under the U(1) is the large 4-cycle, and the second that the small 4-cycle

becomes charged.

There is one further choice that must be made — whether the D7 branes lie on top

of orientifold planes or away from them. The former choice ensures that the local dilaton

charge is cancelled but introduces new complications due to extra matter fields being

present. We consider both possibilities.

In each one of these constructions, the local setup we will consider is as follows. We

will take a set of D-branes and O-planes, typically on top of each other in order to cancel

local tadpoles.4 We consider magnetic flux turned on in one of the branes in the stack.

The presence of this magnetic flux will generate an FI term in the four dimensional theory,

as explained in the previous section. Also, the magnetic flux will be responsible for the

appearance of chiral superfields in the overlapping region with the magnetised two-cycle.

The gauge group will be of the form G × U(1)F , where the U(1)F factor corresponds

to the branes where we have put magnetic flux5 (we will call it brane or stack F ) and G

can be either6 SO(N), USp(N) or U(N), and lives in the remaining stack of branes (stack

G). In this situation, one expects the following set of fields to appear:

4One can also consider the branes being away from the orientifold plane but, as emphasised in [22], this

potentially leads to F-theory corrections that are beyond the scope of this work.
5For some orientifold projections, the Chan-Paton projection will require to put the same units of

magnetic flux in more than a stack of branes in order to get the U(1) factor.
6This will depend on the orientifold projection over the Chan-Paton degrees of freedom. Generically, if

the stack of branes has no magnetic flux one will get SO(N) or USp(N), with N related to the number

of branes in the stack in a model-dependent way, and the choice of gauge group depends on the choice

of orientifold projection. The U(N) case can arise either if one considers the branes to be away from the

orientifold projection, or if the stack of branes is also magnetised, with an internal magnetic flux that is

different from the flux of the D-brane giving rise to the U(1)F gauge group.
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• A set of fields transforming in the (+1F , G) under U(1)F ×G, that live between the

brane F and the stack G. We will call these fields ϕi.

• Another set of fields transforming in the (+1F , G) under U(1)F ×G, that live between

the magnetised brane F and the orientifold image of G. We will denote these fields

by7 ϕ̃i.

• A set of fields ρ with charge ±2 under U(1)F . These fields live between the brane F

and its orientifold image F ∗.

More generically, one can consider a stack of F -branes, all of them with the same

internal magnetic field. In this case, the fields ϕ transform under the ( F , G), the fields

ϕ̃ (if present) transform under the ( F , G) and the ρij transform under symmetric and

antisymmetric representations of U(NF ) (note NF is not necessarily equal to the number of

F -branes). As we will see now, one can constrain the number of these fields from anomaly

cancellation arguments.

2.4 Anomaly cancellation constraints on the spectrum

The setup we are considering is a set of D7-branes on top of a set of O-planes, and we

will turn on magnetic flux on the former. This magnetic flux induces a tadpole for a lower

dimensional brane charge, that induces a chiral anomaly in the world volume of the branes.

Also, gravitational anomalies will generically be present. We will compute the spectrum

on these branes using anomaly cancellation arguments.

Consider two D7 branes a and b, wrapping different 4-cycles Σa and Σb, and overlapping

over a 2-cycle where both of them support magnetic flux. This gives rise to a number of

chiral fermions, given by the index

Iab =

∫

Σa

PDY (Σb) ∧ Fa −
∫

Σb

PDY (Σa) ∧ Fb

=

∫

Σb

PDY (Σa) ∧ Fa −
∫

Σa

PDY (Σb) ∧ Fb (2.8)

where we define PDA(B) to be the Poincaré dual of the cycle B taken with respect to the

(sub)manifold A. In order to make contact with standard anomaly inflow arguments, we

would like to define this index as a product between D7 and D5 charges, such that the

product is bilinear in them. To do this we define the total class of a D7 with magnetic flux

as [6]

[D7a] = PDY (Σa) + PDY (PDΣa(Fa)) . (2.9)

This definition includes the D7 charge specified by the (co)homology class of the 4-cycle

Σa wrapped by the D7, and the D5 charges generated by the world-volume magnetic flux.8

7Note that there can be situations in which G = G and hence the ϕ̃ fields can be considered as the

antiparticles of the ϕ, so that we do not need to consider them in the D-term potential.
8There is also a D3 charge that we do not mention since is irrelevant in the following.
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Then we define the inner product between two D7 classes as

[D7a] · [D7b] ≡
∫

Y
[PDY (Σa) + PDY (PDΣa(Fa))] ∧ [PDY (Σb) − PDY (PDΣb

(Fb))]

=

∫

Σb

PDY (PDΣa(Fa)) −
∫

Σa

PDY (PDΣb
(Fb)) . (2.10)

This intuitive definition is bilinear in the brane charges and applies in the simplest cases.

In the general case several subtleties arise and one can define such a product in a much

more formal (and complicated) way [6, 23, 24]. Since we do not want to overload the

paper with mathematical jargon, and moreover since the only property of Iab that will be

relevant in what follows is bi-linearity in the D5 and D7 charges (that is also present in

the complete formulae), we will use the simplified expression (2.10) and refer the interested

reader looking for a more formal definition of the index to the above-mentioned papers.

As already mentioned, the total number of chiral multiplets charged under a given

gauge group will be given by the multiplets ϕ, ϕ̃ appearing between the brane (or stack

of branes) supporting the gauge group and other (stacks of) branes appearing in the con-

figuration (and their orientifold images), plus a set of charge ±2 fields (that we denote

generically by ρ) that can appear between the brane (or stack of branes) and its orientifold

image. The number of ϕ, ϕ̃ fields in the configurations will be given by the expressions (2.8)

or (2.10), while the number of ρ fields is generically model dependent. However, as we will

see now, standard anomaly cancellation arguments already used in [25] can easily give us

this number.

To start with, let us consider a configuration with a U(NF ) × U(NG) gauge group.

Generically we will have NF = 1 and G 6= U(NG), but since what we want to compute

is the number of ρ fields, whose number should only depend on the relation between the

brane F and the orientifold and thus should be independent of G, and moreover most of

the orthogonal and symplectic groups do not give rise to anomalies, this calculation will

suffice to compute the actual number of ρ fields regardless of the particular situation.

Given the spectrum, the kind of anomalies one can expect are: SU(NF )3, U(1)F −
SU(NG)2, U(1)F − SU(NF )2, U(1)F − U(1)2G, U(1)3F and gravitational. Out of all these,

only the first two must be cancelled without any help from a Green-Schwarz mechanism

since there are no U(1)s involved. In this section we will see how the matter content

required by the cancellation by the cubic SU(NF )3 anomalies uniquely fixes the number

(and charge) of the ρ-fields. We show in an appendix how this matter content is precisely

the one required for the rest of the anomalies to be cancelled, together with a Green-Schwarz

mechanism.

To get a U(NF ) × U(NG) gauge group one has to put different magnetic flux in two

different stacks of branes. Let us assume that we have a set of N = n + m branes, so that

we put a flux of the form Fn in the n branes (that wrap a 4-cycle Σn) and flux of the form

Fm units in the m branes (that wrap a four cycle Σm, not necessarily different from Σn).

More concretely, using the notation defined in (2.9)

[D7i] = PDY (Σi) + PDY (PDΣi(Fi)) . (2.11)

– 9 –
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with i = n,m. Tadpole cancellation implies

n([D7n] + [D7′n]) + m([D7m] + [D7′m]) − [O7] = 0. (2.12)

with [O7] the class of the orientifold plane, defined analogously to (2.9) and where we have

included the number of orientifold planes and charge of the orientifold compared to that

of a D7 in the definition of [O7]. [D7′i] the orientifold image of [D7i], given by

[D7′i] = PDY (Σi) − PDY (PDΣi(Fi)) . (2.13)

The gauge group on the branes will be U(NF ) × U(NG), with n/NF = m/NG = b ∈ Z+.

Now, we know that tadpole cancellation conditions must imply the cancellation of cubic

SU(k) anomalies for k = n,m, without any contribution from GS terms.

Let us consider the spectrum. There is a set of ϕ fields transforming in ( NF
, NG

),

and a set of ϕ̃ fields transforming in ( NF
, NG

). The number of them is given by9

#ϕ ≡ Inm = [D7n] · [D7m] (2.14)

#ϕ̃ ≡ Inm′ = [D7n] · [D7′m]. (2.15)

There can also be symmetric and antisymmetric representations10. The number of these

fields has to be related to the numbers Ikk′ and IkO, with k = n,m, defined as

Ikk′ ≡ [D7k] · [D7′k], (2.16)

IkO ≡ [D7k] · [O7]. (2.17)

Thus, we express the number of symmetric and antisymmetric representations of NF as

# NF
= αsInn′ + βsInO (2.18)

# NF
= αaInn′ + βaInO. (2.19)

A similar formula holds for NG. Multiplying eq. (2.12) by [D7n] on the left we get

nInn′ + m(Inm + Inm′) − InO = 0. (2.20)

Since m(Inm + Inm′) is precisely b times the anomaly produced by the ϕ, ϕ̃, it follows that

b
[

As(# ) + Aa(# )
]

= nInn′ − InO. (2.21)

9The absolute value of this index signals the net number of fermions and the sign denotes its four

dimensional chirality. Since in field theory one typically choses all fermions to be of the same chirality, one

takes the convention in which a positive sign for Iab indicates the existence of |Iab| fermions with positive

chirality and charges (1a,−1b), whereas a negative sign for Iab implies the existence of |Iab| fermions with

positive chirality and charges (−1a, 1b).
10In some constructions it is possible that tensorial representations can also appear in the confining sector.

In those cases, the non-perturbative superpotential is not known and they would require a further analysis

which is beyond the scope of this paper (for an explicit derivation of the Affleck-Dine-Seiberg superpotential

from non-perturbative string effects see [26]).
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with As(a) is the anomaly produced by the (anti)symmetrics. Given that As = NF + 4,

Aa = NF − 4, substituting (2.18) and (2.19) into (2.21), and requiring the number of fields

to be independent of NF , we get

# NF
=

1

2

(

Inn′ − 1

4b
InO

)

, (2.22)

# NF
=

1

2

(

Inn′ +
1

4b
InO

)

. (2.23)

These (anti)symmetrics are, from the U(1)NF
point of view, a set of charge ±2 fields that

we will call ρ.

There are NF (NF +1)/2×# NF
of them coming from the symmetric representation

and NF (NF − 1)/2 × # NF
coming from the antisymmetric one. The total number of ρ

fields is then given by

#ρ =
N2

F

2
Inn′ − NF

8b
InO (2.24)

Note that, depending on the orientifold content, this number can be positive, negative or

zero. In the following we will take the convention that the four dimensional chirality of the

corresponding fermion is fixed and the sign of the number of ρs is equal to the charge of the

field. Finally, we insist in the fact that since the number of ρ fields should be independent

of the gauge group G, we will also have the number of ρ fields given by (2.24) in the general

situation with SO(N) or USp(N) gauge groups.

Summarising, we have found that there are in general three types of fields, fundamen-

tals ϕi, ϕ̃j and singlet fields under the (generically non-abelian) group G, ρij , where i, j are

flavour indices.

Given this, one can always choose to fix the charges both of the ϕ and ϕ̃ to be +1. De-

pending on the model under consideration, the field ρ can have charge +2 or −2 (cf (2.24)).

Also, anomaly cancellation arguments imply that the charge of T has the opposite sign to

the charge of both ϕ and ϕ̃. Given this, the relative sign between the FI term and the ϕ,

ϕ̃ dependent parts of the D-term is uniquely determined by the sign of ∂T K. Each one of

these possibilities will lead to different behaviour regarding the D-terms and potential de

Sitter lifting. We will consider all these cases in the following section.

3. Explicit constructions

We now study how D-term lifting can be explicitly realised 11 in the various cases listed in

the previous section.

11That is, in the context of a particular Calabi-Yau compactification with one or more Kähler moduli.

We do not give concrete D-brane configurations with magnetic fluxes but assume that a configuration of

branes and fluxes with the properties described in the previous section has been achieved and then study

its implications.

– 11 –



J
H
E
P
0
5
(
2
0
0
7
)
1
0
0

3.1 One modulus case

The simplest case to consider is the one Kähler modulus case, studied in the original KKLT

paper [7]. We will discuss it first for illustration purposes.

We will assume that the 4-cycle corresponding to the only Kähler modulus T carries

D7 branes with a gauge theory undergoing gaugino condensation. We will also assume

that the stack of branes under consideration does not intersect any other stacks of D3

branes, to avoid the appearance of additional massless matter in the low energy theory

(this possibility has been recently discussed in [27]).

We consider one of the D7s and turn on a U(1) magnetic flux on a 2-cycle which belongs

to the 2-homology of the 4-cycle the branes wrap. The fields ρ corresponding to strings

stretching between the magnetised D7 and its orientifold image have charge ±2 under the

U(1) gauge group.12 There are also quark fields ϕ, ϕ̃ with charge +1 which correspond to

open strings stretched between the magnetised brane and the unmagnetised D7s and their

orientifold images.

If an appropriate topological condition is satisfied (that the cycle wrapped by the D7

branes intersects itself over the 2-cycle with magnetic flux), the modulus T will become

charged under the U(1) and a D-term potential is induced of the form

VD =
1

T + T ∗
((∂T K)δT + (∂ρK)δρ + (∂ϕK)δϕ)2 . (3.1)

If the ρ fields have charge +2 then D is positive definite and cannot vanish. This

clearly provides an extra lifting term of order (T + T ∗)−3 to the scalar potential precisely

as proposed in [1]. This option was recently studied in a supergravity model motivated by

string theory in [10].

Let us now consider what is probably the most generic case of a ρ field with charge

−2. In this case the ϕ fields are massive and can be integrated out and we are only left

with a tachyonic field ρ. This can be done since the ϕ fields have charge +1 (same sign as

the FI term). Also there is a mass term in the superpotential of the form ρ ϕϕ which gives

a mass to ϕ once the field ρ of charge q = −2 gets a vev. If the mass of ϕ is greater than

the effective value of the renormalisation group invariant scale Λ of the non-abelian gauge

theory, the fields ϕ can be integrated out and we are left with an effective theory in terms

of only ρ and the Kähler modulus T .

We start then with the 4D supersymmetric effective action in terms of one matter field

ρ with charge q = −2 and one Kähler modulus T with an anomaly induced charge Q/(4π2).

Before eliminating the ϕ fields, the Affleck-Dine-Seiberg superpotential has the form

Wnp =

(

Λ3Nc−Nf

det(ϕϕ̃)

)

1
Nc−Nf

(3.2)

12In general ρ is a Nf ×Nf matrix in flavour space but for simplicity we will first restrict to a single field

ρ, valid strictly for Nf = 1 but capturing the main physics for the general case (we will discuss later the

possible implications of the other fields ρ in the Nf 6= 1 cases)
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where Λ3Nc−Nf = e−8π2T is the scale of gaugino condensation, Nc is the number of colours

determined by the number of un-magnetised D7 branes and Nf the number of flavours of

chiral fields ϕ. This is gauge invariant if Q = −Nf .

After integrating out the ϕ fields, the Lagrangian is determined by the following su-

perpotential and Kähler potential13

W = W0 + ρae−bT (3.3)

K = −2 log(τ3/2 + ξ) +
|ρ|2
τ2/3

, (3.4)

where W0 is the constant flux superpotential, a, b are constants determined by the require-

ment that W has dimension three and is gauge invariant. So:

a =
Nf

Nc
b =

8π2

Nc
. (3.5)

We have also defined 2τ = T + T ∗ and added the α′ correction to the Kähler potential

specified by ξ. In (3.4) we have used the recent result in [28] regarding the moduli depen-

dence of the matter field Kähler potential indicating a ‘modular weight’ of −2/3 for the

matter field ρ.

The scalar potential as a function of T and ρ is of the form:

V = VF + VD (3.6)

with

VF = eK(DiWDjWKij − 3|W |2), VD =
g2

2
D2 =

1

2τ

(

3Q

8π2τ
− q|ρ|2

τ2/3

)2

(3.7)

by neglecting both the matter contribution to ∂T K in D, which goes as − Q|ρ|2

12π2τ5/3 , and the

α′ correction parametrised by ξ. In principle we need to find the extrema of this potential

for the two complex (four real) fields T, ρ. For the axionic parts θT = ImT and θρ = Argρ,

we can see that they only appear in the scalar potential through the non-perturbative part

of W and therefore only in the combination Θ = aθρ − bθT . The orthogonal combination

does not appear in the potential at all but it is just as well, since this is precisely the

combination that is eaten by the anomalous U(1) gauge field to get a mass as it can be

easily verified. Extremising with respect to Θ is straightforward (since it only appears in

the scalar potential through cos Θ, with extrema at Θ = mπ). Therefore the relevant fields

to concentrate on are τ and the modulus of ρ.

Since

DρW = aρa−1e−bT + ρ∗τ−2/3W (3.8)

DT W = −bρae−bT −
[

3

2(τ + ξτ−1/2)
+

|ρ|2
3τ5/3

]

W (3.9)

13W0 is the standard flux superpotential. ξ is the effect of the α′ corrections as computed in [12], that is

proportional to the Euler number of the Calabi-Yau.
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we can easily see that

qρ
DρW

W
+

Q

4π2

DT W

W
= D. (3.10)

Therefore, for a KKLT like scenario in which W0 is very small and there are solutions to

DT W = DρW = 0, it can be seen that D = 0 automatically. In practise it is easier to solve

for ρ in D = 0 and substitute in DT W = 0 to solve for τ . This immediately reduces this

system to the KKLT one with no relevant effect from the D-term. This is as expected from

the discussions by Choi et al. [8]. We thus conclude that it is safe to ignore the effects of

anomalous U(1)’s in the KKLT scenario, where the original AdS vacuum is supersymmetric.

In this case both F and D terms vanish and we still have a supersymmetric AdS vacuum.

We will now consider a scenario similar to that of [15], with a one Kähler modulus

Calabi-Yau manifold, and turn on RR and NS fluxes such that the flux-induced superpo-

tential is W0 ∼ 1 which is more generic. Therefore the nonperturbative effect stabilising

the Kähler modulus T is much smaller in magnitude than W0. Then the supersymmetry

preserving condition DT W = 0 cannot be satisfied and there is no KKLT minimum. In

a large τ approximation, assuming that W0 dominates over the nonperturbative terms in

VF , and after minimising the phase of ρ and the imaginary part of T , the expression for

VF becomes:

VF ∼ |W0|2|ρ|2
3τ11/3

[

1 +
2|ρ|2
3τ2/3

]

+
ξ|W0|2
τ9/2

+ Vnonpert (3.11)

Where Vnonpert is the non-perturbative part of VF .

In order to minimise the full scalar potential with respect to ρ, we observe that for

large τ the D-term dominates and the minimum takes the form:

|ρ|2 =
3Q

8π2qτ1/3
(1 + ǫ), (3.12)

with ǫ ∼ 1
τ . Substituting this result in VD gives

VD =
9Q2ǫ2

2(8π2)2q2τ3
∼ O(τ−5), (3.13)

and VF behaves as

VF ∼ |W0|2
Q

8π2qτ4
+

ξ|W0|2
τ9/2

+ Vnonpert (3.14)

Where

Vnonpert = Ae−2bτ − BW0e
−bτ (3.15)

and A and B are functions of inverse powers of τ . At leading order they are

A =
b2Qa

qa( τ
2 )1+a/3

+
Qa(6b − 4/3ab + 3a2 q

Q)

qa( τ
2 )2+a/3

B =
6bQa/2

qa/2( τ
2 )2+a/6

+
aQa/2

qa/2( τ
2 )3+a/6

. (3.16)

Notice that the second and third term of expression (3.14) are as in the standard KKLT

scenarios with added α′ corrections [15]. The net effect of the ρ field is adding the first
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term (which dominates over the D-term at large τ). This term is precisely what we need in

order to lift to de Sitter space. If without including this term the minimum for τ is an AdS

one, the potential at that minimum scales as −1/τ9/2. The first term in (3.14) dominates

over this at large τ since it scales as +1/τ4. Furthermore, since both powers are similar we

need only a tuning of order 1/τ1/2 in the coefficient of the ρ induced VF in order to have

a de Sitter minimum (and not wash away completely the original AdS minimum). The

de Sitter minimum can be obtained for values of τ ∼ 10 − 100. The necessary tuning is

smaller than in the original KKLT case due to the higher power of the lifting term. Still

the magnitude of this term can be controlled if the 2-cycle where the magnetic flux is at

the tip of a warped throat as in the KKLT case. Notice that in this case the parameter Q

would be modified by the warp factor as expected [1].

This is therefore an explicit realisation of de Sitter lifting from D-terms as proposed

in [1]. Notice that both D and F terms are non-vanishing in the resulting minimum. Notice

however that in the original discussion of [15] there were also de Sitter minima, even though

at relatively small volume. The D-term lifting does not appear to be particularly useful in

this case. Things are different in the more generic, many Kähler moduli case.

3.2 Two moduli case

Let us consider the toy model of a hyper-surface in the weighted projective space IP4
[1,1,1,6,9]

studied in [17, 29], with two Kähler moduli Tb and Ts.

The Kähler potential for the Kähler moduli is given by

K = −2 log (V + ξ) with V = (Tb + T ∗
b )3/2 − (Ts + T ∗

s )3/2 . (3.17)

We assume that a stack of D7 branes wraps the small 4-cycle, such that a nonper-

turbative superpotential is generated in the four dimensional effective field theory. This

will generically result in stabilising the modulus Tb corresponding to the overall volume

perturbatively at an exponentially large value while Ts will be fixed at an O(1) value. For

details of the construction we refer to [16].

3.2.1 Fluxes on the large cycle

Let us turn on magnetic flux on a 2-cycle which is a sub-cycle of the large 4-cycle corre-

sponding to Tb.

For simplicity we will assume that the modulus Tb is entirely perturbatively stabilised,

so that it does not appear in the superpotential (this is justified a posteriori if the volume

is exponentially large we can neglect the nonperturbative dependence on Tb). This will be

the case as long as there are a sufficient number of massless adjoint multiplets living on

the world-volume of the branes left after turning on RR and NS fluxes. This means that

the superpotential can be written as

W = W0 + Ase
−asTs . (3.18)

We are assuming that Ts is not charged under the U(1) living on branes wrapping the large

cycle (which will be the case if the 4-cycles corresponding to Ts and Tb do not intersect
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over any 2-cycle), so that we do not need to include open string fields in the superpotential

formula (3.18).

As explained in [16], the nonperturbative effects do not destabilise the flux-stabilised

complex structure and dilaton moduli. Therefore we will only discuss the Kähler moduli

dependence of the scalar potential. For the time being, we assume an arbitrary parametri-

sation for the Kähler potential of the ρ field:

K = −2 log(V) + c
ρρ∗

(Tb + T ∗
b )α

. (3.19)

It is easy to see that under a redefinition of ρ, ρ → ρ/
√

c, the dependence on c is eliminated

both from the Kähler potential and from the D-term. Therefore we may set c = 1.

The metric on moduli space is computed in appendix B. It can be used to compute

the full scalar potential, in particular the lowest order F-term contribution involving |ρ|2
which will be of interest to us.

Let us investigate where ρ is stabilised. If there were no F-term contributions to its

potential, ρ would be stabilised by the requirement that the D-term vanish. However, there

are F-term contributions coming from Kρρ̄(DρW )(DρW ), as well as Kbb̄(DbW )(DbW ) and

the mixed terms Kiρ̄(DiW )(DρW ) (and complex conjugates). All these contributions turn

out to scale as the same power of 1/V:

1

V2+ 2
3
α
|ρ|2|W0|2. (3.20)

The coefficient of this term can be shown to be (1 − α). This is done in appendix C.

As discussed earlier, the sign of the charge of the ϕ fields is aligned with the sign of the FI

term, so they always have a positive mass, while the charges of ϕ and ρ can be either of

the same or opposite sign. Let us first assume that the sign of the charge of the ϕ’s is the

same as the charge of ρ.

Therefore the D-term now has the form

VD =
1

Tb + T ∗
b





p

Tb + T ∗
b

+ k
∑

i

|ρi|2
(Tb + T ∗

b )α
+ l

∑

j

|ϕj |2
(Tb + T ∗

b )α





2

, (3.21)

There are also F-term contributions to the scalar potential involving ρi and ϕj , of the form

∑

i

|ρi|2
(Tb + T ∗

b )3+α
+

∑

j

|ϕj |2
(Tb + T ∗

b )3+α
. (3.22)

The full potential is clearly minimised for ϕ = ρ = 0, which gives an uplift potential of the

form

VD =
p2

(Tb + T ∗
b )3

∼ p2

V2
. (3.23)

This will be sufficient to uplift a nonsupersymmetric minimum with cosmological constant

∼ −1/V3 as long as there is a fine tuning in ǫ = p2 of order 1/V. Recalling that p = Q/(4π2),

with Q an integer, we can see that p2 is naturally of order 1/1000, so for volumes in the
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region V ∼ 103 no extra fine tuning (coming from warping or other mechanisms) is required.

Note that this is a realisation of the original proposal of [1].

In this analysis we did not include the non-abelian D-term for the quark fields,

V nonab
D =

1

Ref

∑

a

(

(∂ϕiK)T a
ijϕj

)2
, (3.24)

with T a the generators of the nonabelian gauge group. V nonab
D is a positive definite contri-

bution to the energy which only depends on the ϕ fields, so ϕ = 0 is still a minimum.

Suppose now that the charge of the ρ fields is opposite in sign to the charge of the ϕ

fields. Then the scalar potential is minimised at ϕ = 0 and only one of the ρ fields (say,

ρ ≡ ρ1) is nonzero. That there is a stationary point with these properties is clear. That it

is a minimum can also easily be shown, after observing that, after minimising,

D =
p

Tb + T ∗
b

− k
|ρ|2

(Tb + T ∗
b )α

+ l
|ϕ|2

(Tb + T ∗
b )α

=
1

2k(Tb + T ∗
b )2

. (3.25)

Then one has
∂2V

∂ϕ∂ϕ∗
=

1

(Tb + T ∗
b )3+α

+
2l

(Tb + T ∗
b )α+1

D > 0. (3.26)

The ρj , j > 1 are flat directions of V.

The D-term contribution to the mass of ρ arises from

1

Tb + T ∗
b

(

r

(Tb + T ∗
b )

− q|ρ|2
(Tb + Tb)α

)2

, (3.27)

and scales as |ρ|2/V4/3+2α/3. Here any O(1) constant factors from differentiating K have

been absorbed into q, r > 0 and the negative sign has been explicitly inserted to emphasise

that ρ is tachyonic.

Thus the minimum for ρ will be such that the D-term is almost, but not completely,

cancelled. More explicitly, let us consider the |ρ|2 contributions from the F- and D-terms:

V = f(Ts, Tb) +
(1 − α)

V2+ 2
3
α
|ρ|2|W0|2 +

1

Tb + T ∗
b

(

r

(Tb + T ∗
b )

− q
|ρ|2

(Tb + Tb)α

)2

. (3.28)

Minimising with respect to ρ we find

r

(Tb + T ∗
b )

− q|ρ|2
(Tb + Tb)α

=
(1 − α)

2q

1

V 4
3

|W0|2, (3.29)

so that

|ρ|2 ∼ V2(α−1)/3, (3.30)

and the F-term contribution to the scalar potential, (1−α)

V2+2
3 α

|ρ|2|W0|2, scales as V−8/3, while

the D-term contribution scales as V−10/3.
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Let us now investigate the resulting scalar potential, setting α = 2/3 as explained in

section 3.1., and considering only lowest order terms in the 1/V expansion14

V =
λ
√

τse
−2asτs

V − µ

V2
τse

−asτs +
ν

V8/3
+

ξ

V3
. (3.31)

It turns out that neglecting the leading order α′-correction, which scales as ξ/V3, the

potential has no minima. There is a stationary point determined by

easτs =

(

36

83 · 25

)(

asAs

W0

)

τ4
s (3.32)

V =
36

215

√
τsτ

4
s , (3.33)

which can numerically be checked to be a saddle point. Therefore we need to include the

α′ corrections.

We know that including the α′ corrections to the scalar potential gives rise to non-

supersymmetric AdS minima before any lifting allows a de Sitter lifting. One must then

add the lift in a controlled manner to avoid wiping out the minimum altogether. This

amounts to assuming a fine tuning of the coefficient of the uplifting term with respect to

the coefficient of the α′ correction term as in the original KKLT scenario. Given that the

cosmological constant of the AdS minimum is roughly −1/V3, and that the lifting term is

of the form 1/V8/3, it can be seen that a fine tuning of order 1/V1/3 is required.

We checked numerically that lifting to a stable de Sitter vacuum can indeed be achieved,

with values as = 2, λ = 4, µ = 20, ξ = 131, ν = 3.125. The resulting volume is roughly

50000, with V−1/3 ≈ 0.06 and ν/ξ ≈ 0.02.

To achieve a fine tuning of this magnitude, a hierarchically small FI term is required.

This may be achieved already due to the suppression factor of 4π2 in the FI term. It may

also be the result of warping: the low energy effective action for the magnetised D7 brane

contains a term coming from the Yang-Mills kinetic terms, of the form

∫

d8x
√

det g8FmnFmn, (3.34)

where g8 is the induced metric on the D7 brane. Assuming a warped ansatz for the metric

of the form

ds2 = e2A(y)ηµνdxµdxν + e−2A(y)gmn(y)dymdyn, (3.35)

we observe that the powers of e2A(y) cancel out of
√

det g8. Assuming that the D7 brane

has a constant warping A(y) = A over its worldvolume, the raising of indices in Fmn gives

e4A, indicating that the term (3.34) is suppressed by an overall warp factor.

This effect may be hard to achieve in practise since the 4-modulus Tb corresponds to

the overall volume of the Calabi-Yau, and it is difficult to envisage a situation in which

most of that 4-cycle can be in a highly warped region.

14The constants µ, ν and ξ are defined as follows µ ∼ as|AsW0|, λ ∼ a2
s|As|

2. ν ∼ |W0|
2,

ξ ∼ −χ(M)|W0|
2, with χ(M) the Euler number of the Calabi-Yau. See [16] for details.
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3.2.2 Fluxes on the small cycle

Let us now consider turning on magnetic flux on a brane wrapping one of the small 4-

cycles. We need to include the dependence of the Kähler metrics on the small modulus.

Following [28], we parametrise this dependence as

K = −2 log V +
|ρ|2

(Ts + Ts)βVα
, (3.36)

where Ts is the modulus of the small 4-cycle. Let us estimate first the contribution to the

F-term energy, coming from eKKρρ|DρW |2. This can be seen to scale as

|ρ|2|W0|2
1

V2+α(Ts + T ∗
s )β

. (3.37)

In fact, a careful analysis similar to the one in appendix C shows that the F-term contri-

bution is
(

1 − 3α

2
+ 8β

)

|ρ|2|W0|2
1

V2+α(Ts + T ∗
s )β

. (3.38)

If β is negative, and larger than 1/8 in magnitude, the overall coefficient in (3.38) will be

negative.

The superpotential for this case may be written as

W = W0 + ρϕϕ̃ + As
e−asTs

(det(ϕϕ̃))p (3.39)

with p the corresponding power in the Affleck-Dine-Seiberg superpotential. Note that we

do not include a term allowed by gauge invariance, ρae−bTs , since the ρ fields are not

charged under the nonabelian gauge group which condenses and hence are not expected to

appear in the superpotential (note that once we integrate out the ϕ’s such coupling will

appear).

As mentioned in section 2.3, there are two possibilities for which of the Kähler moduli

(Tb and Ts) becomes charged under the anomalous U(1). Let us first consider the case that

Ts becomes charged. The charges of the ϕ fields relative to the charge of Ts under the

anomalous U(1) are fixed by the gauge invariance of (3.39). The sign of the FI term may

or may not change from the case of fluxes on the large cycle, depending on whether (∂TsK)

has the same or opposite sign to (∂Tb
K).

In the case that the ϕ fields have positive mass squared, we can integrate them out

keeping only ρ. Then if ρ has positive mass squared, the lifting can be achieved since the

D-term scales as 1/V2. If however, ρ is tachyonic, then after minimising with respect to ρ,

the combination of (3.38) and the D-term potential gives a negative energy contribution,

not allowing for a de Sitter minimum.

In the large V limit, the D-term potential is

1

Ts + T ∗
s

(

r

V − |ρ|2q
Vα(Ts + T ∗

s )β

)2

(3.40)
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Minimising the sum of F-term and D-term contributions to the energy with respect to ρ

gives
(

1 − 3α

2
+ 8β

)

· |W0|2
V2+α(Ts + T ∗

s )β
=

2q

Vα(Ts + T ∗
s )β+1

D, (3.41)

with

D ≡
(

r

V − |ρ|2q
Vα(Ts + T ∗

s )β

)

(3.42)

In the large volume limit one has D ∼ 1/V2. Therefore, the D-term potential behaves like

D2 ∼ 1/V4.

The VEV of ρ is fixed by

|ρ|2 ∼ rVα

qV . (3.43)

The F-term contribution to the energy is therefore ∼ 1/V3 and is insufficient to lift the

vacuum to de Sitter, even if its overall coefficient is positive. Interestingly, this behaves

like α′ corrections to the scalar potential and could be used for proving the existence of

large volume minima for Calabi-Yau manifolds M with χ(M) = 2(h1,1 − h1,2) > 0. This is

a very model dependent statement, though, since one requires r/q to be large enough.

If the ϕ fields have opposite charge to that of the FI term, they cannot be integrated

out, and since they can cancel the D-term, a similar argument to the one above applies so

that lifting cannot be achieved.

The following case is that the field that becomes charged under the anomalous U(1)

is Tb rather than Ts. Anomaly cancellation implies then that there cannot be ϕ, ϕ̃ fields

living between magnetised and unmagnetised branes wrapping the small 4-cycle. The

superpotential is thus given by (3.18). Since the sign of the FI term is determined by ∂bK,

it is negative. In case there are branes wrapping the large cycle, an anomaly is generated,

and consequently ϕ fields must exist (this time corresponding to strings stretched between

the branes on the small 4-cycle and those wrapping the large 4-cycle) and will have a

positive mass. After integrating them out, the D-term potential is of the form

1

Ts + T ∗
s

(

r

Tb + T ∗
b

± q|ρ|2
Vα(Ts + T ∗

s )β

)2

(3.44)

If the sign of ρ is positive, lifting can be achieved with an appropriate amount of warping.

If it is negative, and the sign of the F-term contribution (determined by 1− 3α/2 + 8β) is

negative, minimising with respect to ρ will only yield a negative total contribution. Notice

that this will likely be the case if α > 0 and β < 0, as advocated in [28]. In this case, lifting

would be impossible. However, the result of [28] relies on the assumption that the matter

fields localised in the small cycle decouple from the dynamics of the large cycle, which will

not generically be the case if the two cycles intersect and there are branes wrapping both

of them.

The last case we will analyse is having magnetised branes wrapping the large cycle

in such a way that it is the small cycle the one that gets charged. This case is rather

similar to the one with fluxes on the small cycle with the small cycle becoming charged,

and, similarly to that case, it does not give de Sitter vacua.
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4. Conclusions

We have studied the spectrum of chiral fields in magnetised D7 branes, with a gauge group

SU(Nc) × U(1) and fields ϕ, ϕ̃ in the fundamental of SU(Nc) and anomalous U(1) charge

+1, and SU(Nc) singlets ρ with anomalous U(1) charge ±2. This has allowed us to consider

several scenarios depending on the number of moduli and the location of the D7 branes

and magnetic fluxes.

(i) If all matter fields have positive charge, then the D-term cannot vanish and the min-

imum of the scalar potential can be lifted to de Sitter space. This can be considered

a string realisation of the model considered by Achúcarro et al. [10].

(ii) The fields ϕ, ϕ̃ have positive charge but the fields ρ have negative charge. In this

case the KKLT-like scenario with supersymmetric AdS minimum remains essentially

unchanged and the D-term does not lift the minimum to de Sitter space, in full

agreement with the arguments of Choi et al. However once α′ corrections are included

both F- and D-terms are non-vanishing and the minimum may or may not be lifted

to de Sitter depending on the type of 4-cycle that the D7 branes wrap.

The lifting mechanism works naturally for volumes of order in the thousands, but in

order to work properly for larger volumes, the 2-cycle in which the magnetic flux is turned

on has to be at the tip of a deeply warped throat. The lifting is achieved by tuning the

warp factor appropriately as in the original KKLT scenario. The necessary geometry is

possible to realise 15 but an explicit construction is beyond the scope of this article.

In the cases where the D-term lifting does not happen, a relevant question would be if

the D-terms change the nature of the minima found in the absence of magnetic fluxes. We

have seen that, as expected, the supersymmetric AdS minima such as the original KKLT

scenario are not affected by the anomalous U(1). Furthermore the same happens for large

volume minima. The fact that there are minima with exponentially large volume remains

true even after adding the D-terms, independent of the fact that they lift to de Sitter space

or not. This makes these scenarios more robust.

Our mechanism of moduli stabilisation can be seen as a generalisation of the mechanism

proposed in [13] of using only D-terms and soft supersymmetry breaking terms to stabilise

the Kähler moduli. In principle we could achieve this by turning-off the non-perturbative

effects.16 However when we turn them off, the field equations for the Kähler moduli become

linear and they are not stabilised. Introduction of (anti) D9-branes may be needed to

achieve stabilisation but then care most be taken about avoiding Freed-Witten anomalies.

This is clearly model dependent and will not be addressed further here.

We would like to point out that a crucial part of our calculations was to use the recently

computed Kähler moduli dependence of matter fields [28]. It was crucial to know the

modular weights of the matter fields in order to establish the positivity of the contribution

15See for instance [30]. We thank H. Verlinde for discussions on this point.
16A related mechanism of Kahler moduli stabilisation with magnetic fluxes in toroidal setups has been

proposed in [14].
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of the matter fields to the F-term part of the potential. Here we used the simplest case in

which all matter fields are assumed to wrap the same cycle. Other cases discussed in [28]

are easily incorporated.

In most of our considerations we only included a single matter field ρ singlet under the

non-abelian gauge symmetry. In general it is a matrix of these fields ρij with i, j flavour

indices. In the nonperturbative superpotential, the term ρNF means actually det ρij and in

the D-terms and Kähler potential, these fields appear in the combination
∑

ij |ρij|2. This

means that there are several combinations of these fields that do not appear explicitly in

the potential and could remain flat. It would be interesting to study their possible role

as inflaton candidates once further corrections to the potential are included. In any case

there is no problem about their stabilisation since they are bounded complex quantities

which are always stabilised at finite values.

In summary, we have generalised the current discussions on moduli stabilisation to

include magnetised D7 branes of the type expected to include the standard model in a

fully realistic setting. We hope this is only a first step towards a more stringy realisation

of realistic chiral models within the KKLT and exponentially large volume scenarios. The

fact that the D-terms can be actually used for de Sitter lifting is very encouraging. Open

questions regarding the actual structure of soft supersymmetry breaking terms remain to be

discussed in detail. In particular, the F-term of the matter field ρ is generally non-zero and

could contribute to the structure of soft supersymmetry breaking in the observable sector.

Here we can only say that, as already discussed in the literature, the lifting mechanism is

the leading source of supersymmetry breaking in KKLT models [8, 31] but its effect on the

exponentially large volumes is less relevant due to the fact that the original AdS minimum

is already non-supersymmetric [17, 32]17.

With this work we believe to have clarified a number of important issues regarding the

effects of anomalous U(1)’s on the moduli stabilisation procedure. This puts the mecha-

nisms of moduli stabilisation on firmer grounds and also allows the possibility for de Sitter

lifting in a controllable manner. The explicit realisation of the lifting mechanism is model

dependent, which we have illustrated with some representative cases. We hope these tech-

niques and results will be useful in detailed constructions of realistic string models including

moduli stabilisation.
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Giddings, L.E. Ibáñez, F. Marchesano, G. Tasinato, A.Uranga, H. Verlinde, I. Zavala for

useful discussions on the subject of this article. DC, MPGM and FQ thank the KITP Santa

Barbara and organizers of the ‘String Phenomenology’ workshop where part of this research

was done. MPGM thanks Perimeter Institute and CECS, Valdivia, Chile, where part of

this work was done, for kind hospitality and support. The work of DC is supported by the

17Notice that in all cases supersymmetry is broken after the lifting. A TeV gravitino mass can be obtained

naturally in the large volume scenario since m3/2 ∼ W0MP /V whereas in the KKLT scenario a fine tuning

of W0 will still be needed to get small enough gravitino masses.

– 22 –



J
H
E
P
0
5
(
2
0
0
7
)
1
0
0

University of Cambridge. MPGM is partially supported by the European Community’s

Human Potential Programme under contract MRTN-CT-2004-005104 and by the Italian

MUR under contracts PRIN-2005023102 and PRIN-2005024045. FQ is partially funded

by PPARC and a Royal Society Wolfson merit award. KS is grateful to Trinity College,

Cambridge, for financial support.

A. Anomaly cancellation

We check in this section18 how the matter content described in section 2.3, together with

the GS mechanism, cancels all possible anomalies that could be present in our setup.

A.1 U(1)a − SU(Nb)
2 anomalies

The mixed anomaly is given by the formula

Aab =
∑

r

Qa(r) · Cb(r) (A.1)

where Cb(r) is the quadratic Casimir of SU(Nb), and Qa(r) is the U(1) charge. Let us

consider first the case a 6= b. The only fields relevant for this computation are the ϕ

and ϕ̃. Knowing that for both fundamental and anti-fundamental representations one has

C(r) = 1
2 , one readily gets

Aab =
1

2
Na(Iab + Iab′). (A.2)

This anomaly should eventually be cancelled by a GS term. Now, consider the case a = b.

Now, the relevant fields are not only the ϕ’s and ϕ̃’s but also the symmetrics and the

antisymmetrics. Knowing that

C( a) =
Na + 2

2
, (A.3)

C( a) =
Na − 2

2
, (A.4)

Q( a) = Q( Na) = +2, (A.5)

we get

Aaa =
1

2

∑

c 6=a

Nc(Iac + Iac′) + 2 · Na + 2

2
(# ) + 2 · Na − 2

2
(# )

=
1

2b



bNaIaa′ + b
∑

c 6=a

Nc(Iac + Iac′) − IaO



 +
1

2
NaIaa′ . (A.6)

Now, the term between square brackets vanishes because of (2.12), and the remaining

anomaly is just 1
2NaIaa′ . It has the same form as (A.2), so we can say in full generality

18This section follows closely refs. [25, 33]. Though these references dealt only with toroidal and orbifold

constructions, their results can be extended to more general constructions since they rely only in the bi-

linearity of the intersection product between D7 and D5 charges.
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that the leftover anomaly U(1)a − SU(Nb) anomaly between some a and b sectors is just

given by

Aab =
1

2
Na(Iab + Iab′). (A.7)

This is the term that must be cancelled by the GS mechanism.19 It is easy to see that it is

indeed the case. As explained in the main text, magnetic flux in the world-volume of the

D-brane a generates a charge for every modulus Ti which intersects the two-cycle(s) where

magnetic field has been turned on. Wrapping a D7-brane in the four cycle associated to Ti

induces an anomaly for the U(1)a. The anomaly is given precisely by the products of the

coefficients of
∫

M4 D2,i ∧ Fa and
∫

M4 ImTiFi ∧ Fi, with D2,i being the Hodge dual in four

dimensions of ImTi, and Fi the SU(Ni) field strengths. But this coefficient is precisely of

the form (A.7), since it is equal to the D5 charge of the brane a times the D7 charge of the

brane i. Note that the factor Na arises in the CS term from the normalisation of the U(1).

A.2 U(1)a − U(1)2b anomalies

Let us analyse the case of the cubic anomaly. Let us start by assuming a 6= b. This anomaly

is given by

Aab =
∑

r

Qa(r) · Q2
b(r). (A.8)

In this case only the ϕ and ϕ̃ fields are relevant and one gets

Aab = NaNb(Iab + Iab′) (A.9)

The factor NaNb comes since in a bifundamental representation there are NaNb fields from

the U(1) point of view. In the case a = b, we have to take into account that there a number

of ρ fields given by (2.24) with charge +2 (again, in case the number is negative, it means

that the charge is −2 so that everything is consistent). In this case the anomaly reads (the

1/3 factor comes from the symmetry of the diagram)

Aab =
1

3



Na

∑

c 6=a

Nc(Iac + Iac′) + 23

[

N2
a

2
Iaa′ − Na

8b
IaO

]





=
Na

3b



bNaIaa′ + b
∑

c 6=a

Nc(Iac + Iac′) − IaO



 + N2
a Iaa′ . (A.10)

Again, the term in square brackets vanish because of (2.12) and the remainder is N2
aIaa′ ,

whose form is the same as that of (A.9). We can write in full generality that the remainder

of the cubic anomaly U(1)a − U(1)2b is given by

Aab = NaNb(Iab + Iab′). (A.11)

19We recommend the reference [34] for a nice and detailed explanation of how the GS mechanism takes

place from the field theory point of view.
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Again, this term will be cancelled by the GS mechanism. It is easy to see that this is the

case, following a similar argument to that sketched for the mixed anomaly case. Note that

in this case there is an extra factor of Nb appearing from the cubic case due to the fact that

we are considering the coupling to the U(1)b field, coming from a term ∼ Nb

∫

M4 Fb ∧ Fb,

Fb being in this case the U(1) field strengths.

A.3 Gravitational anomalies

The gravitational anomaly for a given U(1)a group is just given by

Aa =
∑

r

Qa(r) = Tr Qa. (A.12)

In our case this is given by

Aa = Na

∑

c 6=a

Nc(Iac + Iac′) + 2

(

N2
a

2
Iaa′ − Na

8b
IaO

)

. (A.13)

After imposing the tadpole cancellation we obtain

Aa =
3

4b
NaIaO. (A.14)

This is the bit that has to be cancelled by the GS mechanism. One can check it does,

following the steps outlined in [25].

B. Metrics on moduli space

We now compute the metric and inverse metric on moduli space, in the limit of (the real

part of) Tb large. The relationship between the volume and Tb is (for large Tb, and up to

constant factors) V ∼ T
3/2
b .

Ki̄ =







1/V4/3 1/V5/3 1/V 2
3
(α+1)

1/V5/3 1/V 0

1/V 2
3
(α+1) 0 1/V 2

3
α






. (B.1)

Here the moduli are put in order {1, 2, 3} = {Tb, Ts, ρ}.
The determinant of Ki̄ is V− 2

3
α− 7

3 . The inverse metric is thus

Ki̄ = V 2
3
α+ 7

3







V−2/3α−1 V−2/3α− 5
3 V−2/3α− 5

3

V−2/3α− 5
3 V−2/3α− 4

3 V−2/3α− 7
3

V−2/3α− 5
3 V−2/3α− 7

3 V− 7
3






. (B.2)

So that

Ki̄ =







V4/3 V2/3 V2/3

V2/3 V 1

V2/3 1 V 2
3
α






. (B.3)

Following [16], let us now consider the limit of large V such that V ∼ easτs . The first

thing to consider is where the axion of Ts is fixed. The relevant terms, before including
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the effects of ρ, are the mixed terms from Ksb̄DsWDbW , of the form Ksb̄(∂bK)W (∂sW ).

This term scales as W (∂sW ) with V. After including the terms with ρ, there are more

contributions to the axion potential, coming from the mixed terms in Ksρ̄(DsW )(DρW ),

Kbρ̄(DbW )(DρW ), Kρρ̄(DρW )(DρW ), and their complex conjugates. The parts of these

terms involving ∂ρW are all vanishing as we are assuming there is no nonperturbative

contribution involving Tb, ρ in the superpotential. Therefore, from the first term, only

Ksρ̄(∂sW )(∂ρK)W is relevant, scaling as V− 2
3
α(∂sW )W.

Thus the axion is still fixed mainly by the Ksb̄(∂bK)W (∂sW ) term, at a value which

makes the overall sign of this term negative.

C. Computing the |ρ|2 F-term contribution

The determinant of the metric Ki̄ in (B.1) can be seen to scale as KbbKssKρρ+KρbKbρKss.

These terms can be estimated individually as

Kbb̄ =
3

V4/3
+

α(α + 1)|ρ|2
V2(α+2)/3

(C.1)

Kss̄ =
3

2V(Ts + T ∗
s )1/2

(C.2)

Kρρ̄ =
1

V2α/3
(C.3)

Kbρ = − αρ

V2(α+1)/3
. (C.4)

The first contribution which includes a |ρ|2 factor comes from the term in the scalar

potential

Kρρ̄|(∂ρK)W |2, (C.5)

and the contribution turns out to be

|ρ|2
V2α/3

|W |2. (C.6)

The next contribution is from Kρb̄(∂ρK)W (∂bK)W , and turns out to give

− α|ρ|2
V2α/3

. (C.7)

There is an identical contribution from the conjugate of this term.

The next contribution comes from Kρs̄(∂ρK)W (∂sW )W , whose scaling with volume

is

−3α(Ts + T ∗
s )3/2|W |2|ρ|2

V2α/3+13/3
. (C.8)

The following term to consider is Kbb̄(∂bK)W (∂bK)W (there is a term in the inverse

metric appearing in Kbb containing |ρ|2, and also two more terms coming from the (∂bK)

factors). The scaling is given by
α

V2α/3
|ρ|2|W0|2 (C.9)
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The next term is Kss̄(∂sK)W (∂sK)W , giving only terms which scale as

1

V2α/3+1/3
, (C.10)

which is suppressed with respect to the contributions we computed before.

Lastly, one may also consider Ksb̄(∂sK)W (∂bK)W. This gives

|ρ|2
V2α/3+2/3

. (C.11)

In total, after taking into account the pre-factor of eK ∼ 1/V2, the highest order F-term

contribution including a |ρ|2 factor is

(1 − α)
|ρ|2|W0|2
V2α/3

. (C.12)

This is still positive for α = 1/2.

D. FI terms in the toroidal case

The main aim of this appendix is to fix the sign of the FI term with respect to the charge

of the ϕ fields. To do this, we will compute the mass of the ϕ’s from the purely stringy

formulae and check they consistently come from a FI term. Then we check that the

corresponding FI term computed by other means agrees with this calculation. The content

of this section is based on ref. [19].

D.1 From the mass formula

Consider a factorisable T 6 = (T 2)3 whose basis of 1-forms we denote by dxi, dyi, i = 1, 2, 3.

A IIA factorisable D6 brane in such toroidal setup is described by six wrapping numbers20

D6 (n1,m1) (n2,m2) (n3,m3),

where ni (mi) represents the number of times the brane wraps the xi (yi) direction. Given

two stacks of D6 branes that intersect at several points in the T 6, there will be a single

massless chiral fermion living in each one of the intersection points. The net number

of intersection points gives thus the net number of chiral fermions, that is given by the

absolute value of

Iab =
3

∏

i=1

(ni
am

i
b − ni

bm
i
a). (D.1)

For each one of these intersection points there will be a tower of scalars, of which the

lightest ones have masses

m2
1,ab =

1

2α′
(−|θ1

ab| + |θ2
ab| + |θ3

ab|) m2
2,ab =

1

2α′
(+|θ1

ab| − |θ2
ab| + |θ3

ab|) (D.2)

m2
3,ab =

1

2α′
(+|θ1

ab| + |θ2
ab| − |θ3

ab|) m2
4,ab =

1

α′

[

1 − 1

2
(+|θ1

ab| + |θ2
ab| + |θ3

ab|)
]

, (D.3)

20See [33] for a review on intersecting branes.
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where θi
ab is the angle21 the brane a makes with the brane b, in units of π.

For arbitrary wrapping numbers, a D6 will go to a (stack of) D9(s) with magnetic flux

under 3 T-dualities along the x directions, but special choices of wrapping numbers can

lead us to lower dimensional (stacks of) branes. We can use this D6-brane language to

describe D7 branes, as follows. A D7i is defined as a D7 that is pointlike in the ith torus

and wraps completely the jth and kth ones. After the three T-dualities we can describe a

single D7i by the numbers

D71 (1, 0) (n1
2, 1) (n1

3,−1)

D72 (n2
1,−1) (1, 0) (n2

3, 1)

D73 (n3
1, 1) (n3

2,−1) (1, 0)

Consider the intersection between a D7i and a D7j where we only turn on magnetic flux

in the torus where both D7 branes overlap (that is, nj
i = ni

j = 0 for these particular i, j).

Then it is easy to see that there are two lightest scalars, whose mass is

m2
ij =

1

2πα′

∣

∣

∣

∣

arctan

(

(2π)2α′

Ak
ni

k

)

+ arctan

(

(2π)2α′

Ak
nj

k

)∣

∣

∣

∣

≃ 2π|ni
k + nj

k|
Ak

. (D.4)

This mass can never be tachyonic. On the other hand it is clear that since whenever

ni
k + nj

k 6= 0 we will have a chiral fermion living between both branes, the presence of this

relative magnetic flux is breaking supersymmetry. We can see that the mass of this scalar

can be seen as coming from a couple of FI terms, each one of them associated to one of

the stacks of branes and, in particular, to the presence of magnetic flux on them. The FI

term associated to a D7i brane when magnetic flux is present in the kth torus is easily

computable and given by

ξi =
2πni

k

Ak
=

∫

T 2
k

F

Ak
. (D.5)

Since the squared mass (D.4) is always positive, one can see that the sign of the FI term

is correlated with the charge of the bifundamental scalars under the gauge groups. A

straightforward analysis shows that whenever one has two D7s that overlap over a T 2

where both of them have flux, the charge under U(1)i of the state going from the brane i

to the brane j has the same sign as the FI term associated with the brane i.

Now we provide more evidence that this is indeed a FI term, following methods already

developed in papers [19, 22], so we will be brief.

21Given the wrapping numbers (nj
i , m

j
i ) with all the nj

i ≥ 0, this angle is given by πθi
ab = tan−1

“

mb
i R

y
i

nb
i
Rx

i

”

−

tan−1
“

ma
i R

y
i

na
i

Rx
i

”

. This is the situation usually stressed in the literature. However, one has to take into account

that when negative values for one or both of the nj
i are used the formula for this angle is slightly different,

though straightforward to obtain in a case-by-case analysis.
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D.2 From the DBI action

Another way of checking that magnetic flux gives rise to a FI term is to consider the

difference between the DBI action for the D7-brane with magnetic flux and this same

action in the absence of flux. The DBI action in the Einstein frame reads (notice the

absence of curvature contributions in the toroidal case)

S = −Tp

∫

dp+1x
√

gµν + 2πα′Fµν , (D.6)

with

Tp =
(2π)−pα′−(p+1)/2

gs
. (D.7)

From this expression we read the gauge coupling constant (in the supersymmetric limit)

for the U(1) living in the D7:

1

g2
i

=
V4

(2π)5gsα′2
(D.8)

with V4 the (dimensionful) volume wrapped by the D7. Now, note that the difference in

vacuum energy in the four dimensional theory due to the presence of the magnetic flux is

δV =
(2π)−7V4

gsα′4





√

1 + (2πα′)2
(

2πni
k

Ak

)2

− 1



 ≃ 1

2

1

g2

(
∫

T 2
k

F

Ak

)2

(D.9)

in the dilute flux approximation. Note that equations (D.5) and (D.9) can consistently

come from a D-term potential of the form

VD,i =
g2
i

2





ξi

g2
i

+
∑

j

qj|φj |2




2

(D.10)

where φj stands for all the canonically normalised fields charged under the corresponding

U(1) with qj being their corresponding charges, and ξi is given by (D.5).

D.3 From the N = 1 supergravity algebra

FI terms can be extracted from the Kähler potential K of the compactification, via the

supergravity formula

ξi

g2
i

=

(

∂K

∂V i

)

V i=0

(D.11)

where V i is the vector superfield of the corresponding U(1). In toroidal compactifications

the Kähler potential for closed string moduli reads (both in Type IIA and Type IIB)22.

K/M2
P = − log(S + S∗) −

3
∑

i=1

log(Ti + T ∗
i ) −

3
∑

i=1

log(Ui + U∗
i ), (D.13)

22Note a different normalisation of the Kähler potential with respect to e.g. [19]. In particular

(M2
P )[ours] =

1

8π
(M2

P )[19]. (D.12)
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where (in Type IIB)

Re S =
1

2πgs

ReTi =
AjAk

(2π)5gsα′2
(D.14)

The exact formula for the U fields will be irrelevant in what follows. Now, suppose a

D7i brane wraps the four-cycle whose volume is parametrised by Ti. Suppose we turn

on worldvolume magnetic field in the jth 2-torus, j 6= i. Then, following the arguments

developed in [22] for the general case, the T fields that will become charged will be the

ones corresponding to the 4-cycles that intersect the 4-cycle wrapped by the D7i in a 2-

cycle threaded by magnetic flux. In this case, it is easy to see that, since the torus has

no self-intersections, if a D7i has magnetic flux in the jth 2-torus, then only the 4-cycle

whose volume is parametrised by Tk will become charged (i 6= j 6= k). That implies that

one must modify the Kähler potential (D.13) making the change Tk → Tk − QkVi, where

Qk is the charge associated to this cycle, so that it remains a gauge invariant function of

the superfields [18]. Applying formula (D.11) we obtain

ξi

g2
i

= M2
P

Qk

2 Re Tk
. (D.15)

Using the fact that 1/g2
i = Re Ti and that

M2
P

2
=

(2π)−7V6

g2
sα

′4
(D.16)

with V6 being the dimensionful compactification volume, we obtain, equalling (D.5)

and (D.15)

Qk =
(2π)7g2

sα
′4

V6
Re TkRe Ti

∫

T 2
j

F

Aj
=

1

(2π)3

∫

T 2
j

F, (D.17)

so the D-term potential reads

VD,i =
1

2 Re Ti

(

1

4π2

ni
j

2 ReTk
+

∑

a

qa|φa|2
)2

(D.18)

in accordance with [22].
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[22] M. Haack, D. Krefl, D. Lüst, A. Van Proeyen and M. Zagermann, Gaugino condensates and

D-terms from D7-branes, JHEP 01 (2007) 078 [hep-th/0609211].

[23] M.R. Douglas, Lectures on D-branes on Calabi-Yau manifolds, prepared for ICTP Spring

School on Superstrings and Related Matters, Trieste, Italy, 2-10 April (2001).

[24] P.S. Aspinwall, D-branes on Calabi-Yau manifolds, hep-th/0403166.
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